Validation for Solar Wind Prediction from Models Installed at the CCMC

Lan K. Jian^{1,2}, P.J. MacNeice², M.L. Mays^{3,2}, D. Odstrcil^{4,2}, A. Taktakishvili^{3,2}, B. Jackson⁵, H.-S. Yu⁵, P. Riley⁶, I.V. Sokolov⁷

¹Univ. of Maryland, College Park, MD, USA
 ²NASA Goddard Space Flight Center, MD, USA
 ³Catholic Univ. of America, Washington DC, USA
 ⁴George Mason Univ., VA, USA
 ⁵Univ. of California, San Diego, CA, USA
 ⁶Predictive Sci. Inc., CA, USA
 ⁷Univ. of Michigan, MI, USA

Thanks to Model Providers and CCMC Staff

Solar Wind Prediction Is Used by Space Weather Forecasters

- Courtesy of CCMC
- Background solar wind and IMF sector boundary can affect the CME propagation and distort the embedded flux-rope topology
- The prediction of ambient solar wind is related to getting the right shock parameters, which are needed in SEP acceleration models
- Slow-to-fast stream interactions can trigger geomagnetic storms, disturb thermosphere, and affect Low Earth Orbit (LEO) satellite orbits
- Alfvén waves within the fast wind drive a series of particle injections

 affect the evolution of the outer radiation belt

Model Validation Effort

- Each modeling team has made numerous validation efforts, including the solar magnetogram team
- There has been third party validation for quasi-steady solar wind, e.g., Owen et al. (2005, 2008); Lee et al. (2009); MacNeice et al. (2009a, 2009b); Jian et al. (2011)
- There is not enough inter-comparison between more models and followup of model upgrades

Carrington-rotation (CR) synoptic maps are used for runs of quasi-steady solar wind

GONG: Global Oscillation Network Group

NSO: National Solar Observatory at Kitt Peak

MWO: Mount Wilson Observatory

MAS: MHD-Around-a-Sphere model

WSA: Wang-Sheeley-Arge model

SWMF: Space Weather Modeling

Framework

IPS: Interplanetary Scintillation

Enlil Model v2.7 versus v2.8

- Enlil v2.8 became available for Runs on Request (RoR) at CCMC in late 2015, and it is coupled with WSA coronal model v2.2
- The Enlil model coupled with MAS coronal model is still v2.7
- With the increased magnetic field scaling factor and added heating, the new version of Enlil produces stronger IMF and higher solar wind temperature, which are closer to observations

Validation Framework

- We choose CR 2056 2062 (May Nov 2007) to study
 - 1. GONG magnetograms became available in Sept. 2006
 - 2. Late declining phase of a solar cycle, with only one weak CME
 - 3. Ulysses had a fast latitudinal scan
- □ Grid resolutions are different among models. We use the highest resolution available at CCMC. The coarsest time scale from simulation is ~5h, so 5h moving averaging is applied to OMNI and Ulysses hourly data
- Performance metrics for solar wind simulation
 - 1. Visual comparison
 - Mean square error for time series of solar wind parameters (without & with normalization)
 - 3. Model/observation ratio
 - 4. Correlation between model and observation
 - 5. Capturing IMF sectors
 - 6. Capturing slow-to-fast stream interaction regions
- Ulysses { 7. Capturing the latitudinal variations of solar wind
 - 8. Statistics of solar wind at low latitudes and mid-to-high latitudes (not shown here)

1.1 Visual Comparison: Solar Wind Speed at Earth Orbit

After Jian et al. (2015)

Large variability from simulation results

- WSA v2.2 Enlil v2.8 model using magnetograms from different sources: GONG, MWO, NSO
- Multiple models using the same GONG magnetogram

Solar Wind Temperature at 1 AU

1.2 Visual Comparison: Solar Wind Temperature at Earth Orbit

- Enlil model only produces one temperature, so mean temperature of protons and electrons are used for comparison
- SWMF produces separate ion and electron temperatures, so its results are compared with proton temperature
- IPS tomography does not output solar wind temperature or IMF intensity

2. Validation for Time Series of Normalized Solar Wind Parameters

Mean square error (MSE) for parameter x: MSE = $\frac{1}{n}\sum_{t=1}^{n}(x_t - x_t')^2$

Solar wind parameter is normalized by its average in each CR before validation Results are very different from the ones without normalization

3. Model/Observation Ratios of Solar Wind Parameters

- Statistics are from seven CRs and done for minimum and maximum of each parameter too. They provide error bars for solar wind prediction
- Solar wind speed is the best modeled parameter, within ±20%
- The estimation of median B is improved in WSA v2.2 Enlil v2.8

4. Correlation between Model and Observation: Solar Wind Speed

The model performance does not always agree with the MSE results!

5.1 Identification of IMF Sector

Red/blue dashed line: sector boundary (SB) from observation/simulation

- Parker spiral angle is used to determine the magnetic field inward/outward polarity in observation and IPS-Tomography data
- Magnetic field polarity is an output parameter from models
- Apply a 6-step algorithm to eliminate short excursions (≤ 1 day) from the main magnetic field sectors

5.2 Distribution of IMF Sectors at Earth Orbit

5.3 Capabilities of Capturing IMF Sectors

6.1 Prediction of Stream Interaction Region (SIR)

Shaded region: SIR

Red/blue dashed line: stream interface (SI) from observation/simulation

- Apply a 10-step algorithm to automatically detect SIRs using V
 - SIRs last more than half a day
 - Vmin ≤ 500 km/s, Vmax ≥ 400 km/s, speed increase ≥ 100 km/s
 - SIRs crossing two CRs are excluded
- Find the best-matching SIR and SI from observations

6.2 Capabilities of Capturing SIRs

7. Capabilities of Capturing Latitudinal Variations of Solar Wind

Solar Wind Speed & IMF Polarity

Jian et al. (in revision, 2016)

WSA v2.2 – Enlil v2.8 Using Different Magnetogram Synoptic Maps from GONG – I

Default for stationary solar wind: Integral full-rotation magnetograms

Input for WSA
-Enlil model
at the CCMC

Default for CME simulation: Daily standard quick-reduce synoptic magnetograms (more frequent maps are available in GONG archive)

Not Default: Standard quick-reduce zero point corrected magnetograms. Fully calibrated CR maps with the correction are **unavailable**

WSA v2.2 – Enlil v2.8 Using Different Magnetogram Synoptic Maps from GONG – II

Simulations using daily magnetograms not necessarily capture more transient IMF polarity changes. Some contributing factors:

- Synoptic maps have been smoothed to a longitudinal resolution of 2.5° (~4h)
- Coarsest time resolution from Enlil model's grids is ~5h

WSA v2.2 – Enlil v2.8 Using Different Magnetogram Synoptic Maps from GONG – III

No Grouping of Field Sector

Field Sector (> 1 day)

No superior one between CR magnetogram and daily magnetogram for capturing IMF polarity

WSA v2.2 – Enlil v2.8 Using Different GONG Magnetograms and Different Parameter Settings

- More than 10 parameters are used in setting the ambient wind conditions at Enlil's inner boundary
- They have been recently added in the WSA-Enlil result page as the control file
- The run results using old default setting (currently used in RoR) and new default setting (to be implemented) are similar, except in the new runs
 - Lower number density, larger discrepancy from observation, consistent with a decrease of number density at the inner boundary
 - Higher magnetic field intensity, closer to observation, consistent with the doubling of magnetic field scaling factor

Summary

- Comprehensive performance metrics are developed for solar wind prediction
- Eight model combinations installed at CCMC are evaluated for 2007. General strengths and weaknesses for each model are diagnosed
- All of the models make different simplifying assumptions, treating the physics in very approximate fashion in many aspects, thus the model performance is also a test of how well those assumptions can simulate the nature
- It is not yet available to use the same grids for various models at CCMC
- The model validation for a more active phase of solar cycle 24, a longer period, and following the magnetogram and model upgrades is needed
- SHINE session "Coronal model drivers: A fistful of maps"

Backup

2.1 Validation for Time Series of Solar Wind Parameters

Mean square error (MSE) for parameter x: MSE = $\frac{1}{n}\sum_{t=1}^{n}(x_t - x_t')^2$

Ambient Wind Condition Settings of Enlil v2.8f

– Old defaults (a4b1): ratio of specific heats (gamma): 1.6666667 runpar=g53q5, vfast=700., vslow=200., vrfast=25., vrslow=100, bfast=300, bscl=2,

dfast=200, tfast=2, xalpha=0.03, nbrad=1

– New defaults (a6b1):
ratio of specific heats (gamma): 1.6666667
runpar=g53q5, vfast=700., vslow=200.,
vrfast=25., vrslow=75, bfast=350, bscl=4,
dfast=125, tfast=1.5, xalpha=0.05, nbrad=1